Как определить направление вращения двигателя

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте здесь.


Итак, как определить вращение насоса аксиально-поршневого визуально?

  1. Берем гидронасос и кладем ее «горбом» кверху.
  2. Смотрим на насос со стороны задней крышки. (Не вала, не по стрелочкам на корпусе или бирки, так как бирку или стрелку на корпусе могли поменять или сбить. На корпусах новых моделей данных стрелочек вообще нет, там идет литье в форме прямоугольной площадки).
  3. Повторюсь, что, если данная гидромашина является насосом, у нее отверстия разного диаметра (у гидромотора одинакового). Так вот с какой стороны отверстия большего диаметра, того и вращения (см. рисунок внизу статьи).

Однофазный двигатель 220В — постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже (однофазный двигатель 220В)

Схема подключения однофазного двигателя. Однофазный двигатель 220в

Схема подключения однофазного двигателя

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Основные виды рисунка протектора шин

Независимо от сезонности использования, все современные автошины по рисунку протектора подразделяются на три основных вида:

  1. Ненаправленные.
  2. Направленные симметричные.
  3. Направленные ассиметричные.

Каждый из этих видов имеет особенности установки и использования. Определить конкретный вид автошины проще всего по маркировке на боковой поверхности либо по характерному узору протектора.

Автошины с ненаправленным рисунком

Узор протектора у этих покрышек бывает самым разнообразным. Они не имеют какой-либо специальной маркировки и устанавливаются на автомобиль в произвольном порядке.

Шины с направленным симметричным рисунком

Имеют особый V-образный рисунок и специальную маркировку на внешней боковине покрышки в виде надписи «ROTATION», а также стрелки, указывающей нужное направление вращения колеса.

Покрышки с направленным ассиметричным рисунком

Обладают различающимися узорами на разных сторонах рабочей поверхности протектора и маркируются словом «Outside» на наружной стороне автопокрышки. Дополнительно на внутренней боковой стороне может иметься надпись «Inside».

Разновидностью маркировки таких автошин являются обозначения «Right» и «Left» на наружных боковинах. В зависимости от нанесенной надписи, покрышки ставятся только на правую или левую сторону автомобиля.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Как определить правильное направление вращения гидромотора, гидронасоса аксиально-поршневого по обозначению на корпусе (шильдику)?

Сделать это достаточно просто, стоит взглянуть на указанные обозначения производителем вашего оборудования, допустим у вас выбито на шильдике корпуса, что это гидромотор 310.3.56.00.06 , если коротко 310-тип, 3-латунный блок цилиндров, 56-объём.

Нас инетерсуют цифры идущие сразу за 56, в нашем случае это два 00, так вот вторая цифра в этих самых 00 укзавыет на вращение мотора или насоса. Забегая немного вперёд, скажем, что моторы не имеют направление вращения, почему? читайте ниже, а сейчас приведём часть расшифровки обозначений.

Какие цифры могут быть указаны и как они расшифровываются:

0 – гидромотор реверсивный шлицевой по ГОСТ 6033-51 и ГОСТ 6033-80;
1 – гидромотор реверсивный шпоночный;
2 – гидромотор реверсивный вал – шестерня;
3 – насос правый шлицевой по ГОСТ 6033-51 и ГОСТ 6033-80;
4 – насос левый шлицевой по ГОСТ 6033-51 и ГОСТ 6033-80;
5 – насос правый шпоночный;
6 – насос левый шпоночный;
7 – гидромотор реверсивный шлицевой по ГОСТ 6033-80;
8 – насос правый шлицевой по ГОСТ 6033-80;
9 – насос левый шлицевой по ГОСТ 6033-80;
А – гидромотор реверсивный шлицевой 1 . 23Т 16/32DP ANSI B92.1а;
В – гидромотор реверсивный шлицевой 1 3/8,, 21Т 16/32DP ANSI B92.1а;
С – насос правый шлицевой 22х1,25х9g ГОСТ 6033-80;
D – насос левый шлицевой 22х1,25х9g ГОСТ 6033-80;
E – гидромотор реверсивный шлицевой по DIN 5480 (центрирование по боковым поверхностям);
F – гидромотор реверсивный шлицевой по DIN 5480 (центрирование по боковым поверхностям, уменьшенный диаметр);
G – насос правый шлицевой по DIN 5480 (центрирование по боковым поверхностям);
H – насос правый шлицевой по DIN 5480 (центрирование по боковым поверхностям, уменьшенный диаметр);
I – насос левый шлицевой по DIN 5480 (центрирование по боковым поверхностям);
J – насос левый шлицевой по DIN 5480 (центрирование по боковым поверхностям, уменьшенный диаметр);
K – гидромотор реверсивный шпоночный по DIN 6885 (увеличенный шпоночный вал);
L – насос правый шпоночный по DIN 6885 (увеличенный шпоночный вал);
M – насос левый шпоночный по DIN 6885 (увеличенный шпоночный вал).

Предположим мы имеем по факту после цифр 56, цифры 06, значит исходя из обозначения второй цифры 6 получается насос левый шпоночный, ничего сложного. Полное описание расшифровки всех цифровых обозначенных на шильдике корпуса вашего гидромотора или гидронасоса вы можете прочитать в нашей статье « Как расшифровать обозначения номера гидромотора и гидронасоса? »

Варианты подключения обмотки

Асинхронный трёхфазный электромотор располагает тремя обмотками – для каждой фазы в отдельности – идущими в пазы статора. Однако для возникновения электродвижущей силы и, как результат, вращения ротора требуется их соединение друг с другом. Вариант подключения конкретного двигателя важно знать. Так как это поможет выбрать верную схему подключения его к сети 220В.

Каждая из трёх обмоток отвечает своей фазе и имеет как начало, так и конец. При этом входы и выходы обозначаются соответствующими буквами и цифрами:

Номенклатура двигателей, выпущенных в период Советского союза:

  1. Первая фаза С1-С4.
  2. Вторая фаза С2-С5.
  3. Третья фаза С3-С6.

Обозначения современных моторов:

  1. Первая фаза U1-U2.
  2. Вторая фаза V1-V2.
  3. Третья фаза W1-W2.

Подключение обмотки трёхфазного двигателя Источник autogear.ru

Существует две основные схемы соединения обмоток в рассматриваемом типе двигателей:

  • Звездой.

Все выходы обмоток соединены в одну точку, а входы, соответственно, к фазам. Схематическое изображение такого способа внешне напоминает звезду. При таком способе к каждой отдельной жиле прилагается фаза 220В, а двум последовательным – линейное 380В.

Главный плюс такой схемы – приложение линейного тока одновременно к двум жилам, что значительно снижает пусковые токи и позволят ротору выполнять мягкий старт. Минусом является меньшая мощность из-за слабых токов в обмотке.

  • Треугольником.

Вход предыдущей обмотки соединяется с выходом последующей – и так по кругу. В результате схема напоминает треугольник. При линейном напряжении, равном 380В, токи в обмотке будут достигать существенно большего значения, чем в выше приведённом варианте. Это даст возможность проявить мотору существенно большее значение силы. Недостаток схемы – более сильные пусковые токи, способны привести к перегрузке сети.

Схема «треугольник» Источник ytimg.com

Полезно знать! Чтобы получить преимущества первой и избежать недостатков второй схемы, подключение электродвигателя 380 В и последующий его разгон осуществляют на «звезде», а затем его автоматически переключают на «треугольник».

Можно ли использовать гидромотор вместо гидронасоса и наоборот?

Если мы говорим про гидромотор – это гидравлическая машина, преобразующая энергию потока жидкости в механическую энергию вращения, направление вращения не важно, так как он реверсивный, то есть может быть как правого, так и левого вращения.

В связи с этой особенностью гидромотор можно использовать как гидронасос любого вращения. То есть, если заменить насос мотором конструктивно ничего не изменится, только будет немного шумнее и медленнее при работе.

Внимание:

Ставить вместо мотора, насос категорически не рекомендуется!

Важность направленной установки шин для разных типов протектора.

Итак, как уже отмечалось ранее, шины могут иметь ненаправленный, направленный и асимметричный рисунок.

Именно этот рисунок и определяет требовательность покрышек к направленной установке:

Обзор конструкции

Три основные составляющие двигателя – ротор, статор и корпус. Кожух обеспечивает защитные функции, предупреждает повреждения на статоре и роторе. Также позволяет закрепить подвижную, стационарную часть асинхронной машины.

Статор размещен неподвижно в двигателе, содержит станину и магнитопровод. Под воздействием пресса магнитный проводник фиксируется к станине и формирует электромагнитное ядро. Магнитное поле, создаваемое в ядре, беспрерывно вращается. Тонкие листы магнитопровода выполнены из электротехнической листовой стали, крепление пластин способствует образованию пазов и зубцов статора. Шихтованный сердечник, выступающий дополнительным элементом статора, также создан из статорных пластин. Листы сердечника соединяются сваркой, прессом и кольцевыми шпонками – аналогично образован магнитопровод.

Обмотка ротора представлена короткозамкнутыми кольцами, внешне напоминающими колеса беличьих клеток. Включает латунные или медные стержни, приваренные к короткозамкнутым кольцам на торцах. Кольца вбиты в пазы. Статор и ротор разделен воздушной прослойкой.

Обмотка двигателей с фазным ротором в начале изолирована, концы припаяны к контактным кольцам, позволяющим подключить пуско-регулирующий реостат. Цепь ротора получает дополнительное сопротивление, дает возможность регулировать частоту вращения и уменьшения пусковых токов.

Строение асинхронного двигателя

Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Что будет, если перепутать вращение гидронасоса?

Чего нельзя сказать в обратном случае при замене мотора насосом. Так как насос имеет только правое либо левое вращение, что заложено в его конструкцию. И если перепутать вращение, то насос «выплюнет» из себя масло и получится «сухой» запуск. Из школьного курса физики мы знаем, что трение не способствует благоприятному рабочему процессу и оборудование без смазки долго не протянет, если вообще запустится.

Подключение асинхронного мотора 380 В к трехфазной сети в реверс

Схема подключения асинхронника в прямом направлении имеет определенную последовательность подачи фаз A, B, C на контакты двигателя. Ее возможно доработать, например, добавив переключатель, который бы менял местами любые две фазы. Таким способом можно получить схему реверса электродвигателя. В практических схемах такими фазами принято считать B и A.

Схема работает следующим образом:

Разница между прямым и реверсивным пускателями

Главное отличие нереверсивного и реверсивного пусковых устройств, состоит в схеме подключения. Также меняется комплектация. Контактор прямого типа является одиночным, тогда как реверсивный – блочным, состоящим из двух прямых, объединенных в одном корпусе. Визуальные отличия этих двух реле можно видеть на сравнении моделей ПМЛ-1100 (слева) и ПМЛ-1500 (справа):

При этом, должно соблюдаться одно крайне важное условие: реверсивное соединение пускателей должно полностью исключать возможность их одновременного срабатывания. Это неизбежно приведет к возникновению явления короткого замыкания.

Схема подключения реверсивного магнитного пускателя электродвигателей делится на два основных вида:

  1. Подключение к сети с напряжением 220 В,
  2. Запуск контактора на 380 В.

Далее рассмотрим подробнее каждый из вариантов, опираясь на уже упомянутые модели контакторов ПМЛ серии 1500.

Заключение, выводы:

1. Гидромоторы имеют реверсивное вращение (туда-сюда), для них не важно направление, могут заменить гидронасос при необходимости, но при этом несколько упадёт кпд работы техники. Крайне не желательно использование вместо мотора, насоса.

2. Гидронасосы могут быть правого и левого вращения, определить это можно визуально при наличии насоса или зная расшифровку цифр кода идущих в третьем блоке после точки, номера выбитого на шильдике корпуса. Категорически не рекомендуется замена насоса правого вращения на левого и наоборот, во избежание порчи как устройства так и оборудования в целом.

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечаются коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

В этом случае поступают так:

Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

Важно понимать

Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Используем векторы для изучения вращательного движения

В предыдущих разделах этой главы угловая скорость и угловое ускорение рассматривались как скаляры, т.е. как параметры, характеризующиеся только величиной. Однако эти параметры вращательного движения, на самом деле, являются векторами, т.е. они обладают величиной и направлением (см. главу 4). В этом разделе рассматривается величина и направление некоторых параметров вращательного движения.

Определяем направление угловой скорости

Как нам уже известно, вращающееся колесо мотоцикла имеет не только угловую скорость, но и угловое ускорение. Что можно сказать о направлении вектора угловой скорости? Оно не совпадает с направлением линейной тангенциальной скорости, а… перпендикулярно плоскости колеса!

Эта новость всегда приводит к некоторому замешательству среди новичков: угловая скорость ​( omega )​, оказывается, направлена вдоль оси вращающегося колеса (рис. 10.2). Во вращающемся колесе единственной неподвижной точкой является его центр. Поэтому начало вектора угловой скорости принято располагать в центре окружности вращения.

Для определения направления вектора угловой скорости ( omega ) часто используют правило правой руки. Если охватить ладонью ось вращения, а пальцы свернуть так, чтобы они указывали на направление тангенциальной скорости, то вытянутый большой палец укажет направление вектора угловой скорости ( omega ).

Теперь угловую скорость можно использовать так же, как и остальные векторные характеристики движения. Направление вектора угловой скорости можно найти по правилу правой руки, а величину — по приведенной ранее формуле. То, что вектор угловой скорости направлен перпендикулярно плоскости вращательного движения, часто вызывает некоторые трудности у начинающих, но к этому можно быстро привыкнуть.

Определяем направление углового ускорения

Если вектор угловой скорости направлен перпендикулярно плоскости вращательного движения, то куда направлен вектор углового ускорения в случае замедления или ускорения вращения объекта? Как известно (см. предыдущие разделы), угловое ускорение определяется формулой:

где ​( alpha )​ — угловое ускорение, ​( Deltaomega )​ — изменение угловой скорости, ​( Delta t )​— время изменения угловой скорости.

В векторной форме оно имеет следующий вид:

где ​( mathbf )​ — вектор углового ускорения, а ​( Deltamathbf )​ — изменение вектора угловой скорости. Отсюда ясно, что направление вектора углового ускорения совпадает с направлением изменения вектора угловой скорости.

Если вектор угловой скорости меняется только по величине, то направление вектора углового ускорения параллельно направлению вектора угловой скорости. Если величина угловой скорости растет, то направление вектора углового ускорения совпадает с направлением вектора угловой скорости, как показано на рис. 10.3.

А если величина угловой скорости падает, то направление вектора углового ускорения противоположно направлению вектора угловой скорости, как показано на рис. 10.4.

Как определить направление

Если двигатель крутится, его можно выключить, и на выбеге посмотреть на крыльчатку.

Если же остановка неприемлема, можно взять тонкую проволочку/бумажку/соломинку, и аккуратно вставить её в крыльчатку. По движению “тестера” станет всё ясно.

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.

Видео: Коллекторный электрический двигатель

Мы вновь возвращаемся в мир занимательного — как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.

Читать также: Почему паяльник не нагревается

Защита электродвигателей

Автоматы защиты электродвигателя трёхфазного предохраняют от тока короткого замыкания, от длительных перегрузок, от дисбаланса фаз в электропитании или внутри электродвигателя. Это приводит к перегреву двигателя и к отказам в работе. Защитное устройство автоматически отключит двигатель при появлении нештатной ситуации.

Часто применяется защита электродвигателя при помощи универсальных мотор-автоматов. Эти устройства имеют модульную конструкцию и управляют работой силовых контакторов, а некоторые мотор-автоматы разрешают точно регулировать параметры защитного отключения.

При выборе асинхронных машин и в процессе их эксплуатации следует учитывать характеристики асинхронного электродвигателя. Только при этом условии можно добиться наиболее эффективного использования установки.

Постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

Уточним важные моменты:

Рекомендации по установке направленных шин

Самостоятельная смена автопокрышек для опытных автолюбителей не вызывает особых затруднений. Если же за подобной услугой обращаются в шиномонтажную мастерскую, нужно обязательно лично проверять правильность установки резины после окончания работ.

Следует помнить, если производилась перебортовка покрышек, обязательна балансировка колес на специальном станке. Это необходимо для исключения их биения при движении, особенно на больших скоростях.

После монтажа колес важно проверить давление в шинах и довести его до нужного значения. От этого зависит эффективная работа направленных покрышек на дороге.

Как определить направление протектора на шинах – вопрос, возникающий при использовании покрышек почти всех современных производителей. От этого напрямую зависит безопасность водителя, пассажиров, а также других участников дорожного движения.

Современные шины обладают определенным видом рисунка протектора. Этот рисунок бывает: ненаправленный, направленный и ассиметричный. Благодаря этому разнообразию порой можно попасть в неприятную ситуацию, когда автомобиль по непонятным причинам начинает вести вправо или влево, при этом сход-развал настроен правильно. В данной ситуации, скорее всего, во время очередной «переобувки» с лета на зиму или с зимы на лето, колесо было установлено неправильно. Как определить направление вращение шины, дабы избежать подобных ситуаций? Ответ найдете в данной статье.

Типы рисунка на протекторе

Для начала нужно точно определить направление протектора новых зимних шин, ведь при установке на авто зимней резины направление вращения колеса играет не последнюю роль. Чтобы установить шины правильно, необходимо разобраться в типах направления рисунка на протекторе:

  • Шины с ненаправленным рисунком – самый популярный вариант. Не имеет значения, на какую сторону их устанавливать, они будут одинаково эффективно работать в любом направлении. Стоимость этих шин невысока, и это – вторая причина их популярности.
  • Ассиметричный рисунок — визуально выяснить его направленность проблематично, и по этой причине производитель обычно на боковой части продукции рисует стрелку с надписью «ROTATION», указывающую направление вращения колеса.
  • Направленный рисунок имеет форму елочки, благодаря чему легко определиться с правильным монтажом: при движении вершина «елочки» должна первой коснуться земли.

Имея основные знания в вопросах грамотного подходящего выбора, купить зимние шины дешево не составит особого труда. Приобретая подходящий товар в интернет-магазине Колеса Даром, можно попутно получить подробные консультации специалистов по установке и подбору надежного варианта.

Важно помнить еще несколько значимых нюансов:

  • на каждую ось потребуется устанавливать одинаковые шины в нужном направлении протектора;
  • при сезонной переобувке лучше покрышки подписывать, а монтировать туда же, где они стояли в прошлом году.

На сайте интернет-магазина Колеса Даром можно купить авторезину на зиму по очень привлекательным ценам. А специальная бонусная программа дает возможность каждому автовладельцу значительно сэкономить на расходниках и запчастях

Нормативные ссылки

В
настоящем стандарте использованы нормативные ссылки на следующий стандарт:

ГОСТ
23851-79 Двигатели газотурбинные авиационные. Термины и определения

Примечание — При пользовании настоящим стандартом
целесообразно проверить действие ссылочных стандартов в информационной системе
общего пользования — на официальном сайте национального органа Российской
Федерации по стандартизации в сети Интернет или по ежегодно издаваемому
информационному указателю «Национальные стандарты», опубликованном по состоянию
на 1 января текущего года, и по соответствующим ежемесячно издаваемым
информационным указателям, опубликованным в текущем году. Если ссылочный
документ заменен (изменен), то при пользовании настоящим стандартом следует
руководствоваться заменяющим (измененным) документом. Если ссылочный документ
отменен без замены, то положение, в котором дана ссылка на него, применяется в
части, не затрагивающей эту ссылку.

Запуск мотора схемой звезда-треугольник

При прямом запуске мощных трехфазных электродвигателей, применяя схему управления реверсом, происходят просадки напряжения в сети. Это связано с большими пусковыми токами, протекающими в этот момент. Чтобы снизить значение тока, применяют постепенный запуск мотора по схеме звезда-треугольник.

READ Свап газ 3110 с 402 на 406 как подключить реле стартера

Суть заключается в том, что начало и конец каждой обмотки статора выводят в коробку с клеммами. Управляется схема тремя контакторами. Они поэтапно включают обмотки в звезду, а далее при разгоне двигателя выводят систему на рабочее состояние при подключении треугольником.

Изменение оборотов асинхронного двигателя. Разбор способов регулирования.

Благодаря своей простоте исполнения, относительной дешевизне и надежности трехфазные двигатели широко используются в хозяйстве и производстве. Во многих исполнительных механизмах применяют всевозможные типы асинхронных двигателей . Для широкого спектра применения АД, необходимо изменять и регулировать скорость вращения вала двигателя. Регулировка скорости АД производят несколькими способами. Их мы сейчас и рассмотрим.

  1. Механические регулирование. Путем изменения передаточного числа в редукторах.
  2. Электрическое регулирование. Изменением нескольких параметров питающего напряжения.

Рассмотрим электрическое изменение скорости АД, как более точный и распространённый способ регулирования.

Управление электрическими параметрами позволяет производить плавный запуск двигателя, поддерживать заданные параметры скорости или момента асинхронного мотора.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий