Из каких основных частей состоит тепловой двигатель

Тепловой двигатель

Термодинамика возникла как наука с основной задачей – созданием наиболее эффективных тепловых машин.

Тепловая машина или тепловой двигатель – это периодически действующий двигатель, совершающий работу за счет получения теплоты.

Обычно совершение работы в тепловом двигателе производится газом при его расширении. Газ, находящийся в нем, получил название рабочего тела. Зачастую его заменяют на воздух или водяные пары. Расширение газа происходит по причине повышения его температуры и давления.

Устройство, от которого рабочее тело получает тепло Q n , называю нагревателем.

Это понимается как расширение от объема V 1 к V 2 V 2 > V 1 , затем сжатие до первоначального объема. Чтобы значение совершаемой работы за цикл было больше нуля, необходимо температуру и давление увеличить и сделать больше, чем при его сжатии. То есть при расширении телу сообщается определенное количество теплоты, а при сжатии отнимается. Значит, кроме нагревателя тепловой двигатель должен иметь холодильник, которому рабочее тело может отдавать тепло.

Рабочее тело совершает работу циклично. Очевидно, изменение внутренней энергии газа в двигателе равняется нулю. Если при расширении от нагревателя к рабочему телу передается теплота в количестве Q n , то при сжатии Q ‘ c h теплота рабочего тела передается холодильнику по первому закону термодинамики, учитывая, что ∆ U = 0 , то значение работы газа в круговом процессе запишется как:

A = Q n – Q ‘ c h ( 1 ) .

Отсюда теплота Q ‘ c h ≠ 0 . Выгодность двигателя определяется по количеству выделенной и превращенной теплоты, полученной от нагревателя, в работу. Его эффективность характеризуется коэффициентом полезного действия (КПД), определяющимся как:

Запись уравнения ( 2 ) при учитывании ( 1 ) примет вид:

η = Q n – Q ‘ c h Q n ( 3 ) , КПД всегда.

Машина, отбирающая от тела с меньшей температурой определенное количество теплоты Q c h и отдающая его Q ‘ n телу с наиболее высокой температурой с Q ‘ n > Q c h , получила название холодильной машины.

Данная машина должна совершить работу A ‘ в течение цикла. Эффективность холодильной машины определяется по холодильному коэффициенту, вычисляемому:

a = Q ‘ n A ‘ = Q ‘ n Q ‘ n – Q c h ( 4 ) .

КПД необратимого теплового двигателя всегда меньше, чем работающего по обратимому циклу.

Принцип работы и устройство двигателя

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.


В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на:
    • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
    • инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
    • дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается до температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.

    Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

    Двигатель Стирлинга

    Тепловые двигатели — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

    Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.

    Взаимодействие газа (пара) с поршнем имеет место в паровых машинах, карбюраторных и дизельных двигателях (ДВС).

    Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.

    Подписи к слайдам

    Презентация Виды тепловых двигателей Выполнила: студентка группы 14К1 Коженова Полина

    Тепловые двигатели Паровая машина Газовая, паровая турбина Реактивн-ый двигатель ДВС Виды тепловых двигателей

    Тепловые машины реализуют в своей работе превращение одного вида энергии в другой. Таким образом машины-устройства которые служат для преобразования одного вида энергии в другой. Преобразуют внутреннюю энергию в механическую. Внутренняя энергия тепловых машин образуется за счет энергии топлива

    Парова́я маши́на -тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина двигатель внешнего сгорания, который преобразо-вывает энергию пара в механическую работу.

    Двигатель внутреннего сгорания-это тип двигателя, тепловая машина, в которой химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин, он очень широко распространен, например в транспорте. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин, он очень широко распространен, например в транспорте.

    Газовая турбина это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагр-етого газа преобразуется в механическую работу на валу. Состоит из копрессора, соединённого напрямую с турбиной, и камерой сгорания между ними.

    Паровая турбина — это тепловой двигатель непрерывного действия, в лопаточном аппарате которого потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую, которая в свою очередь совершает механическую работу на валу.

    Реактивный двигатель -создает необходимую для движения силу тяги посредством преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. Рабочее тело с большой скоростью истекает из двигателя, и в соответствии с законом сохранения импульса образуется реактивная сила,толкающая двигатель в противоположном направлении.

    Разнообразие видов тепловых машин указывает лишь на различие в конструкции и принципах преобразования энергии. Общим для всех тепловых машин является то, что они изначально у величивают свою внутреннюю энергию за счет сгорания топлива с последующим преобразованием внутренней энергии в механическую

    Устройство двигателя внутреннего сгорания

    Схема устройства двигателя.

    Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

    Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

    Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

    На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

    Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
    Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

    Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

    Структурная схема работы теплового двигателя

    Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

    В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

    Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.

    Обратимый круговой процесс

    Работа агрегата оценивается, с этой целью принято КПД идеального теплового двигателя. Впервые такое понятие ввёл изобретатель, Карно, в двадцать четвёртом году девятнадцатого века. Главный принцип цикла, обратимость. Согласно рассуждениям инженера, повторяемость процесса будет обеспечена, когда расширение рабочего вещества при нагреве будет сменяться сжатием этой субстанции до начального состояния при охлаждении. Обмен теплом с атмосферой цикле не учитывается, его нет.

    Никола Леонард Сади Карно (1796 – 1832 года жизни):

    Никола Леонард

    Идеальный тепловой двигатель конструктивно содержит устройство нагрева с температурой «Т нагревателя», устройство охлаждения с температурой «Т холодильника» и вещество, которое, то сжимается, то расширяется.

    Рассмотрим стадии цикла:

    • Расширение с температурой = const (А – Б).

    Начальная стадия процесса, температура вещества равно значению «Т нагревателя». Происходит соприкосновение с устройством нагрева, веществу передалось тепло от «Q нагревателя», и оно увеличивается в объёме.

    Стадии цикла Карно:

    цикла Карно

    • Увеличиваясь в объёме, вещество ни отдало, ни получило тепла (Б – В).

    Тело, выполняющее силовое воздействие не соприкасается с устройством нагрева, однако продолжает увеличиваться в объёме, не передавая части теплового носителя атмосфере. Температура вещества выравнивается с температурой установки охлаждения.

    • Сдавливание с постоянной температурой (В – Г).

    Вещество с показателем температуры, равным температуре установки охлаждения «Т холодильника», контактирует с охладителем и уменьшается в объёме, температура не меняется. Но само тело отдаёт часть температуры холодильнику, «Q холодильника».

    • Сдавливание с нарастанием силы и температуры, без теплообмена (Г – А).

    Вещество уже не контактирует с холодильником, сжимается без отдачи температуры атмосфере. Температура вещества приравнивается к температуре нагревательного элемента.

    Изотермические процессы протекают с постоянной температурой, тогда как адиабатические процессы происходят без теплообмена, следовательно, энтропия в процессах Карно сохраняется.

    КПД, соответствующий реальным агрегатам ниже эталонного коэффициента. Идеальный коэффициент используют как эталон, когда определяют, каков резерв разработанной или усовершенствованной силовой установки.

    Виды двигателей

    Что бы легче различать, какие двигатели называют тепловыми, условно агрегаты классифицировали:

    Тепловые двигатели с источником тепла отдельно от рабочего тела.

    Мотор Стирлинга

    Принцип действия основан на круговороте вещества, совершающего работу в замкнутом объёме. Само совершающее работу вещество, время от времени охлаждается или нагревается. Работа выполняется за счёт изменения объёма. Преимущество двигателя в том, что он способен функционировать от подвода тепла любого происхождения.

    Действующая модель двигателя Стирлинга:

    модель двигателя Стирлинга

    Паровой мотор

    Преимущество агрегатов, простота и тяга на низких оборотах. Применение установки, работающую от пара не требует использования редуктора, что облегчает конструкцию. Паровая машина хороша для применения, как тяговый двигатель и по этому показателю превосходит двигатель внутреннего сгорания. Недостатки: вес агрегата, низкая скорость и КПД, постоянное применение больших объёмов жидкости.

    Применение парового двигателя CVA201 на автомобильном транспорте:

    CVA201

    Тепловые двигатели, с источником тепла, выполняющим роль рабочего тела

    Двигатель со сгоранием внутри механизма

    Силовая установка, работа которой сопряжена с частичным переходом энергии от окислившегося горючего в действие силы.

    Классификация моторов проходит по нескольким признакам:

    • потребление топлива (бензин, солярка, пропан, бутан, метан);
    • цикл работы (моторы на 2 или 4 такта);
    • способ приготовления смеси (карбюратор, инжектор, дизель);
    • преобразование энергии (поршень, турбина, комбинация).

    Поршневые двигатели внутреннего сгорания сегодня занимают лидирующие позиции. По сравнению с другими агрегатами, установок сделано и продано большинство. Ни одна сфера деятельности человека не обходится без этих моторов.

    Двухтактный

    Роторные моторы внутреннего сгорания

    Особенность, простота и возможность исполнения любых габаритов установки. Ротор выступает в качестве поршня, вращение происходит по траектории эпитрохоиды в замкнутом пространстве. Пространство снабжено технологическими отверстиями впуска и выпуска, а так же свечой воспламенения. Для выполнения рабочего хода требуется четыре такта, выполнение которых происходит без механизма распределения газов. Роторный мотор не требователен к горючему, дешевле в производстве, и надёжней в сравнении с поршневыми моторами. Недостаток установки, не соответствие экологическим нормам.

    Роторный

    Двигатели с силой тяги от реактивной струи рабочего тела

    Силовые установки функционируют за счёт силы тяги, полученной от отработанных газов при сгорании рабочего вещества. Преимущество в возможности работы в пространстве без воздуха.

    Реактивный

    Турбовинтовые агрегаты

    Сила тяги сгоревшего рабочего тела используется для привода воздушного винта.

    Турбовинтовой

    Тепловая машина Карно

    Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

    Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя и температуры холодильника ?

    Пусть, например, максимальная температура рабочего тела двигателя равна , а минимальная — . Каков теоретический предел КПД такого двигателя?

    Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

    Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

    Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5 ). В этом случае машина функционирует как тепловой двигатель.

    Рис. 5. Цикл Карно

    Изотерма . На участке газ приводится в тепловой контакт с нагревателем температуры и расширяется изотермически. От нагревателя поступает количество теплоты и целиком превращается в работу на этом участке: .

    Адиабата . В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке .

    При расширении газ совершает положительную работу , и за счёт этого уменьшается его внутренняя энергия: .

    Изотерма . Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты и совершает отрицательную работу .

    Адиабата . Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу , а изменение внутренней энергии положительно: . Газ нагревается до исходной температуры .

    Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

    Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя и температурой холодильника .

    Так, в приведённом выше примере имеем:

    В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

    Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

    Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

    Тепловые двигатели. Принцип действия тепловых двигателей

    Тепловым двигателем называется устройство, совершающее механическую работу за счет внутренней энергии топлива.

    Тепловые двигатели весьма разнообразны как по конструкции, так и по назначению. Это и паровые турбины на тепловых электростанциях, и двигатели внутреннего сгорания на автомобилях, тракторах, и реактивные двигатели различных типов.

    Все тепловые двигатели обладают общим свойством — периодичностью действия (цикличностью), в результате чего рабочее тело периодически возвращается в исходное состояние.

    Принцип действия теплового двигателя рассмотрим на примере поршневого двигателя.

    Любой тепловой двигатель состоит из трех основных частей: рабочего тела, нагревателя и холодильника (рис. 1).

    Рабочее тело (пар или газ) получает некоторое количество теплоты Q1 от нагревателя, у которого за счет сгорания топлива поддерживается постоянная высокая температура T1. Это количество теплоты идет на увеличение внутренней энергии газа и совершение им работы A1. В результате газ, расширяясь, переходит из состояния 1 в состояние 2 (линия 1а2), совершая работу A1, равную площади фигуры В1а2С (рис. 2).

    Чтобы процесс был циклическим, поршень необходимо вернуть в исходное положение. Если процесс сжатия провести в обратном порядке (линия 2а1), то работы газа и над газом будут одинаковы и суммарная работа будет равна нулю. Поэтому, чтобы работа сжатия A2 была по абсолютному значению меньше работы расширения, нужно, чтобы каждому значению объема при сжатии соответствовало меньшее давление, чем при расширении (линия 2b1). А это возможно осуществить, только если газ перед сжатием охладить. Для этого рабочее тело приводят в контакт с телом меньшей температуры T2 Литература

    Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 162-163.

    Тепловые двигатели и охрана окружающей среды

    Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

    • Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
    • К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
    • Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

    Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

    О паровых двигателях

    Хронология этого изобретения ведёт свой отсчёт от эпохи Архимеда, придумавшего пушку, стрелявшую с помощью пара. Затем следует череда славных имён, предлагавших свои проекты. Наиболее эффективный вариант устройства принадлежит русскому изобретателю Ивану Ползунову. В отличие от своих предшественников он предложил непрерывный ход рабочего вала за счёт использования попеременной работы 2-х цилиндров.

    Сгорание топлива и образование пара у паровых машин происходит вне рабочей камеры. Поэтому их называют двигателями внешнего сгорания.

    По такому же принципу образуется рабочее тело в паровых и газовых турбинах. Их далеким прообразом явился шар, вращаемый паром. Автором этого механизма был учёный Герон, творивший свои машины и приборы, в древней Александрии.

    Что мы узнали?

    В тепловом двигателе рабочее тело получает тепло от Нагревателя, расширяется, совершая работу и отдавая тепло Холодильнику. Поскольку на совершение полезной работы идет только часть энергии, полученной от Нагревателя, КПД теплового двигателя всегда меньше единицы.

    Экологические аспекты

    За время использования установок, выявлены экологические проблемы тепловых двигателей. Если раньше человечество не ощущало выбросов в атмосферу, то по мере роста производства и увеличения количества установок, влияние чувствуется в значительной степени. Содержание углекислого газа за счёт рассеивания тепла в окружающую атмосферу ведёт к усилению парникового эффекта, что сказывается на всём живом и увеличивает среднегодовые показатели температур на Земле. Глобальное потепление катастрофически повлияет на мировой океан и последствия для цивилизации будут непредсказуемы.

    Содержание углекислого газа

    Очистка, глобальный контроль, применение новых экологических стандартов, вот что спасёт нашу планету. Применение новых, безвредных видов топлива, к которым относится водород, переход на возобновляемые виды энергии. Только объединённые усилия всех стран повлияют на ситуацию, действуя в общих интересах, убережём наш дом от полного вымирания.

    Коэффициент полезного действия (КПД)

    Эффективность эксплуатации любого механизма определяется его КПД. Паровой двигатель, выпускающий отработанный пар в атмосферу, имеет весьма низкий КПД от 1 до 8%, бензиновые двигатели до 30%, обычный дизельный двигатель до 40%. Безусловно, во все времена инженерная мысль не останавливалась и искала пути повышения КПД.

    Талантливый французский инженер Сади Карно разработал теорию работы идеального теплового двигателя.

    Французский математик и физик Мари Франсуа Сади Карно.

    Его рассуждения были следующими: чтобы обеспечить повторяемость циклов, необходимо, чтобы расширение рабочего вещества при нагревании сменялось его сжатием до первоначального состояния. Этот процесс может совершаться только за счёт работы внешних сил. Причём работа этих сил должна быть меньше полезной работы самого рабочего тела. Для этого следует понизить его давление путём охлаждения в холодильнике. Тогда график всего цикла будет иметь вид замкнутого контура, он то и стал называться циклом Карно. Максимальный КПД идеального двигателя вычисляется по формуле:

    Где η сам коэффициент полезного действия, T1 и T2 абсолютные температуры нагревателя и холодильника. Они вычисляются по формуле T= t+273, где t температура по Цельсию. Из формулы видно, что для увеличения КПД необходимо увеличить температуру нагревателя, что ограничено жаропрочностью материала, или понизить температуру холодильника. Максимальный КПД будет при Т= 0К, что также технически неосуществимо.

    Реальный коэффициент всегда меньше КПД идеального теплового двигателя. Сравнивая реальный коэффициент с идеальным, можно определить резервы для совершенствования имеющегося двигателя.

    Работая в этом направлении, конструкторы снабдили бензиновые двигатели последнего поколения инжекторными системами подачи топлива (впрыскивателями). Это позволяет с помощью электроники добиться его полного сгорания и соответственно увеличить КПД.

    Изыскиваются пути уменьшения трения соприкасающихся деталей двигателя, а также улучшения качества используемого топлива.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий